

JAFF 7



International conference 6–9 JUNE 2023 Espace Prouvé, Nancy, France

# «Comparison between the biomechanical responses of the hand and foot when exposed to vertical vibration»

Marrone, F.; Massotti, C.; Goggins, K.A.; Eger, T.R.; Marchetti, E.; Bovenzi, M.; Tarabini, M.

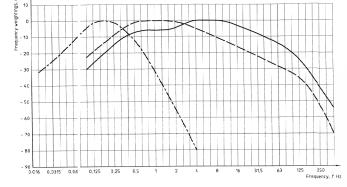


### BACKGROUND

# Occupational exposure to Foot-Transmitted Vibration (FTV)

Workers on means of transport, in manufacturing industries and in mines

Prolonged standing on a vibrating floor


Musculoskeletal disordersMotion sickness

Neurological diseases

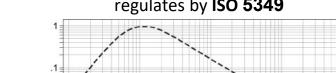
Vascular diseases

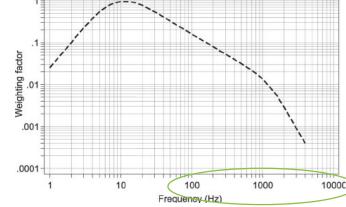
The occurrence of the occupational diseases related to Whole-Body Vibration (WBV) exposure is mitigate by ISO 2631-1

- The same standard for standing, seating and recumbent posture
- Effects of vibration on health
  - $\rightarrow$  Musculoskeletal disorders



BACKGROUND

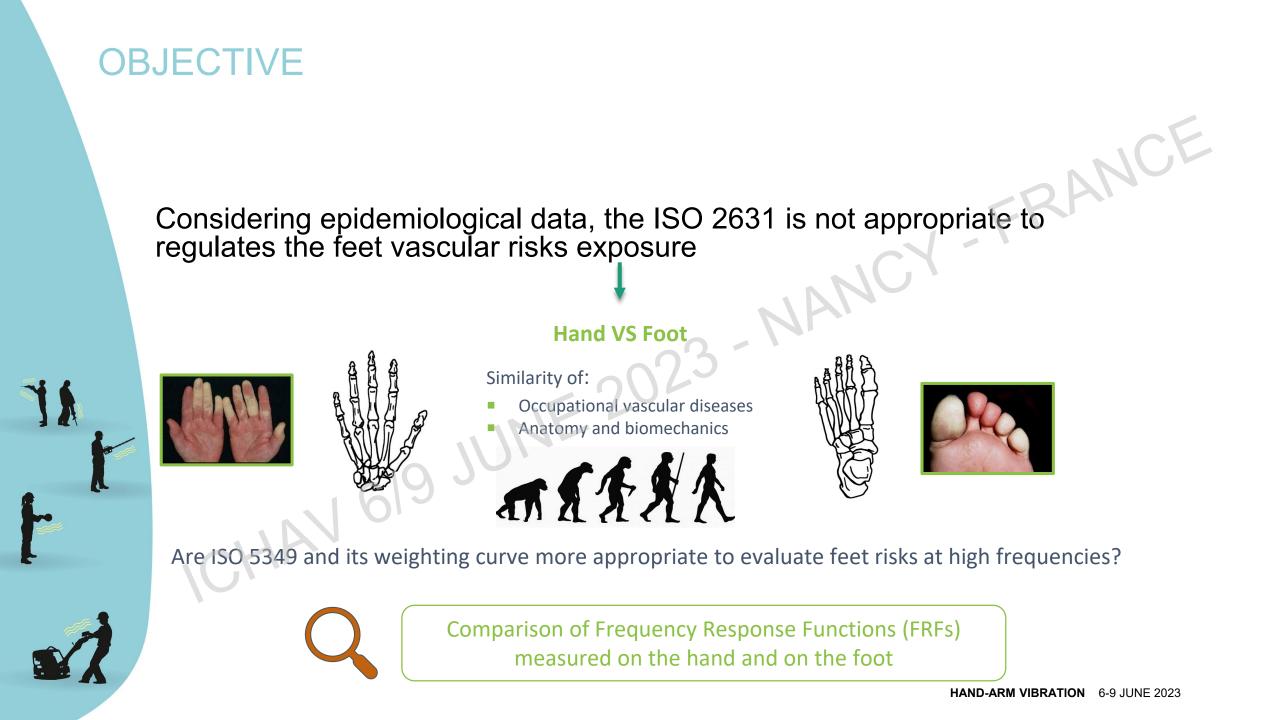

ZANCE Case reports have documented that FTV can cause Vibration-Induced White-Foot (VIWF)


Neurological and vascular disease:

Raynoud's syndrome

decreased blood flow, blanching, and numbness in the toes

Hand-Transmitted Vibration (HTV) exposure regulates by ISO 5349








Hand–Arm Vibration Syndrome (HAVS)



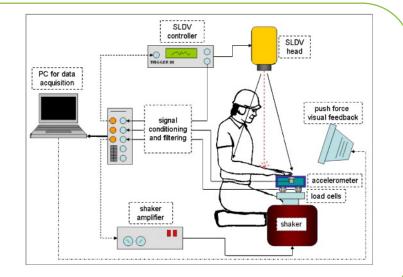


#### HAND-ARM VIBRATION 6-9 JUNE 2023

-RANCE

## METHODOLOGY

#### Hand


*Concettoni, E. et al.*, « The Apparent Mass and Mechanical Impedance of the Hand and the Transmission of Vibration to the Fingers, Hand, and Arm», 2009

#### Foot

Goggins, K.A. et al., «Biomechanical Response of the Human Foot When Standing in a Natural Position While Exposed to Vertical Vibration from 10-200 Hz», 2019

*Goggins, K.A. et al.,* «Standing Centre of Pressure Alters the Vibration Transmissibility Response of the Foot», 2019

- 14 participants
- Random vertical vibration with an RMS of 17 m/s<sup>2</sup> in a frequency range between 5 and 500 Hz
- The transmissibility functions between acceleration at the driving point (flat plate) and the acceleration measured by a laser Doppler vibrometer at <u>41 anatomical locations of</u> the hand–arm system in 7 different contact conditions



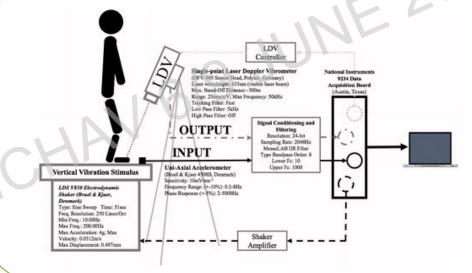


#### HAND-ARM VIBRATION 6-9 JUNE 2023

-RANCE

### METHODOLOGY

#### Hand


*Concettoni, E. et al.*, « The Apparent Mass and Mechanical Impedance of the Hand and the Transmission of Vibration to the Fingers, Hand, and Arm», 2009

#### Foot

Goggins, K.A. et al., «Biomechanical Response of the Human Foot When Standing in a Natural Position While Exposed to Vertical Vibration from 10-200 Hz», 2019

*Goggins, K.A. et al.,* «Standing Centre of Pressure Alters the Vibration Transmissibility Response of the Foot», 2019

- 21 participants
  - A sine sweep of 10 to 200 Hz with a constant peak velocity of 30 mm/s
  - The transmissibility functions between acceleration at the driving point (vertically vibrating platform) and the acceleration measured by a laser Doppler vibrometer at <u>24 anatomical locations of the foot</u> <u>in 3 different standing Center Of Pressure (COP)</u> <u>conditions</u>



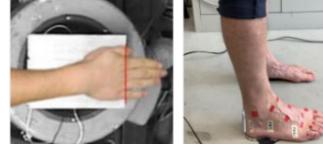


METHODOLOGY

# Similar <u>conditions</u> and anatomical locations between hand and foot have been compared



Condition 1 Whole hand on the plate compared to the natural standing COP position




#### Condition 2

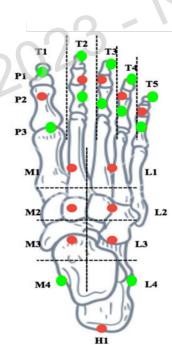
**Only the fingers** entirely on the plate compared to the **forward COP** position (body weight shifted towards the toes)

#### Condition 3

**Only the palm** on the plate compared to the **backward COP** position (body weight shifted towards the heel)



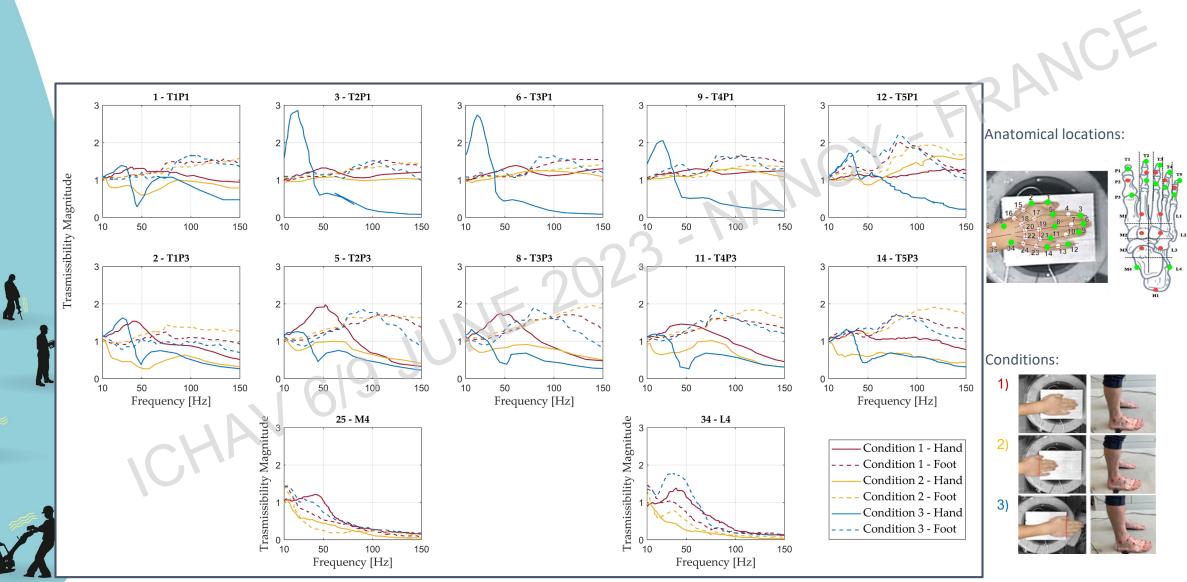



ANCE

## METHODOLOGY

# Similar conditions and <u>anatomical locations</u> between hand and foot have been compared

#### Transmissibility of 12 paired anatomical points from 10 to 150 Hz

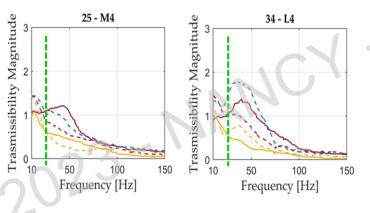

2 31 30 29 28 27 26 25 16 10 19 8 7 6 2 31 30 29 28 27 26 25 20 19 8 7 6 22 21 11 10 9 40 39 38 37 36 35 34 24 23 14 13 12

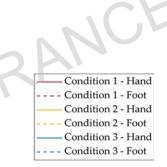


- Tips of the fingers the tips of the toes
  (1-T1P1, 3-T2P1, 6-T3P1, 9-T4P1, and 12-T5P1)
- Knuckles metatarsal heads
  (2-T1P3, 5-T2P3, 8-T3P3, 11-T4P3, and 14-T5P3)
- Wrist ankle
  (25-M4 and 34-L4)



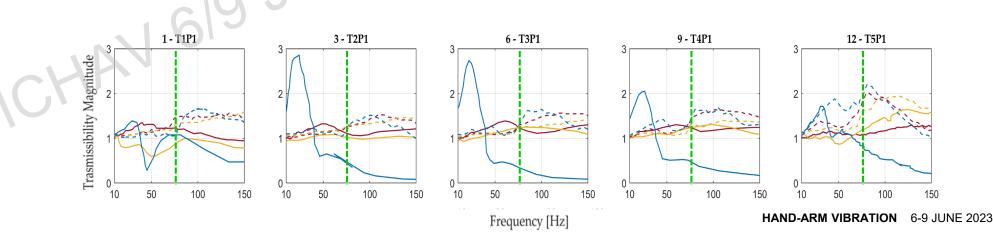
RESULTS





HAND-ARM VIBRATION 6-9 JUNE 2023

## **REsults**

#### Wrist - ankle •


Similar FRFs in all three conditions, with a peak below 50 Hz and a decreasing magnitude up to 150 Hz





#### Fingers - toes and knuckles - metatarsal heads

- In Condition 1 and 2 the transmissibility response is similar until ~75 Hz. Above 75 Hz transmissibility of the foot increases, while the hand transmissibility decreases ٠
- Toes' resonance frequency (above ~80 Hz) is larger than the fingers' resonance frequency (10-60 Hz) ٠



#### The comparison between the biomechanical responses of the hand (*Concettoni*, *E. et al.*, 2009) and the foot (*Goggins*, *K.A. et al.*, 2019) when exposed to vertical vibration showed similar FRFs.

The **similarity between the vibration transmissibility of HTV and FTV** suggests the need for new approaches for FTV evaluation as an alternative to ISO 2631, based on the **HAV standards as reference**.

A specific standard is needed to assess FTV exposure and reduce the occurrence of neurovascular disease



HAND-ARM VIBRATION 6-9 JUNE 2023

#### References

7.

- Musculoskeletal Disorders and Workplace Factors. A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back; U.S. Department of Health and Human Services, Public HealthService, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Washington, DC,USA, 1997. Available online: https://www.cdc.gov/niosh/docs/97-141/default.html (accessed on 15 January 2023).
- 2. Bovenzi, M. Health Effects of Mechanical Vibration. G Ital. Med. Lav. Ergon. 2005, 27, 58–64.
- 3. Tarabini, M.; Saggin, B.; Scaccabarozzi, D.; Gaviraghi, D.; Moschioni, G. Apparent Mass Distribution at the Feet of StandingSubjects Exposed to Whole-Body Vibration. Ergonomics 2013, 56, 842–855.
- 4. Eger, T.; Thompson, A.; Leduc, M.; Krajnak, K.; Goggins, K.; Godwin, A.; House, R. Vibration Induced White-Feet: Overview andField Study of Vibration Exposure and Reported Symptoms in Workers. Work 2014, 47, 101–110.
- 5. Hedlund, U. Raynaud's Phenomenon of Fingers and Toes of Miners Exposed to Local and Whole-Body Vibration and Cold. Int.Arch. Occup. Environ. Heath 1989, 61, 457–461.
- 6. Tingsgård, I.; Rasmussen, K. Vibration-induced white toes. Ugeskr Laeger 1994, 156, 4836–4838.
  - Bovenzi, M. Health Risks from Occupational Exposures to Mechanical Vibration. Med. Lav 2006, 97, 535–541.
- 8. Griffin, M.J. Measurement, Evaluation, and Assessment of Peripheral Neurological Disorders Caused by Hand-TransmittedVibration. Int. Arch. Occup. Environ. Health 2008, 81, 559–573.
- 9. Thompson, A.M.S.; House, R.; Krajnak, K.; Eger, T. Vibration-White Foot: A Case Report. Occup. Med. 2010, 60, 572–574.
- 10. Shen, S.C.; House, R.A. Hand-Arm Vibration Syndrome: What Family Physicians Should Know. Can. Fam. Physician 2017, 63, 206–210.
- 11. ISO-2631-1; International Organization for Standardization (ISO) Mechanical Vibration and Shock— Evaluation of HumanExposure to Whole-Body Vibration—Whole-Body Vibration—Part 1: General Requirements. International Organization for Standardization (ISO): Geneva, Switzerland, 1997.
- 12. ISO-5349-1; International Organization for Standardization (ISO) Mechanical Vibration Measurement and evaluation of human exposure to hand transmitted vibration—Part 1: General requirements. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- 13. Goggins, K.A.; Tarabini, M.; Lievers, W.B.; Eger, T.R. Biomechanical Response of the Human Foot When Standing in a Natural Position While Exposed to Vertical Vibration from 10–200 Hz. Ergonomics 2019, 62, 644–656.
- 14. Concettoni, E.; Griffin, M. The Apparent Mass and Mechanical Impedance of the Hand and the Transmission of Vibration to the Fingers, Hand, and Arm. J. Sound Vib. 2009, 325, 664–678.
- 15. Goggins, K.A.; Tarabini, M.; Lievers, W.B.; Eger, T.R. Standing Centre of Pressure Alters the Vibration Transmissibility Response of the Foot. Ergonomics 2019, 62, 1202–1213.

# Thank for your attention

'n'